Advanced Liquid-Desiccant Technology

Dr. Andrew Lowenstein
Principal Investigator
AlL Research

IES Peer Review Nashville, TN April 30, 2002

Overview

- Develop a new generation of liquid-desiccant conditioners and regenerators based on lowflow technology
- Apply the new liquid-desiccant technology in thermally activated coolers/dehumidifiers that can maintain healthy and comfortable indoor conditions while reducing energy use
- Commercialize the technology first in industrial markets and expand to commercial/residential

Project Team and Partnerships

- AIL Research, Inc.
 - Founded in 1988
 - Eight engineers and machinists
 - Tool and die making
 - Advanced CAD/CAM capability
 - 2,000 s.f. lab and shop
- Dr. Andrew Lowenstein, Principal Investigator
- Mr. Marc Sibilia, Vice President, Engineering
- Kathabar, Inc
 - Industrial & institutional uses of new technology

Generic Liquid-Desiccant AC

Why Pursue Liquid Desiccants?

- Heat and mass transfer in a single component
 - low pressure drops
 - low surface area
 - high "specific" cooling
 - Relatively small size
- Can use interchange HX
 - improves efficiency
 - reduces heat "dump back"
- High efficiency options for regeneration
 - VCD regenerator can have COP over 2.0
- Low temperature regeneration also possible
 - 0.6 COP at 160 F
- Potentially low first cost and operating costs

Challenges of Using Liquid Desiccants

- Eliminate corrosion from liquid desiccant
- Reduce maintenance requirements
- Reduce size and lower equipment cost
- Develop high-efficiency regenerator

Low-Flow Liquid-Desiccant Technology

- Reduce desiccant flooding rates by factor of 10 to 50
- Must continually cool desiccant
- Potential to eliminate carryover of desiccant droplets
- Benefits include
 - Higher efficiency
 - Higher rate of air cooling
 - Lower pressure drops
 - Smaller equipment size
 - Lower first cost

Water-Cooled Zero-Carryover Conditioner

Water-Cooled Zero-Carryover Conditioner

Zero-Carryover Conditioner Project Accomplishments

- Conditioner developed and performance proven
- Die and molds made for extrusion and injectionmolded parts
- Robotic assembly station set up
- 40-plate model sent to NREL for evaluation
- 200-plate prototype completed; field test this summer at Kathabar
- Conceptual design completed for 1000-unit/year manufacturing line
- Manufacturing costs have been estimated

Extrusion Die

Extrusion Die

Robotic Assembly Station

Robotic Assembly Station

40-Plate Conditioner

6,000 cfm Conditioner

Regenerator Development Tasks

- Prove feasibility of zero-carryover scavengingair (SA) regenerator in bench-top tests
- Prove feasibility of 1½-effect regenerator in bench-top tests
- Design, build and test SA regenerator
- Deliver model of SA regenerator to NREL
- Estimate manufacturing costs

1½-Effect Regenerator

11/2-Effect Regenerator

Scavenging-Air Regenerator

Regenerator Development - Status

- Bench-top tests verify 0.70 to 0.75 COP for scavenging-air regenerator (about 20% improvement over state-of-the-art)
- Design heat flux achieved in bench-top test of high-temperature first stage
- ◆ 1.25 COP achievable with 320°F heat source in atmospheric-pressure 1½-effect regenerator
- 200+°F plastic plate extrusion and injectionmolded parts have been fabricated.
- 4-plate model now under test
- Long-term adhesive still an outstanding issue
- Practical high-temperature stage needs to be developed

Conditioner & Regenerator Development Milestones

- (1) Successful plate extrusion
- (2) Robotic assembly station operational
- (3) Successful molded end-pieces
- (4) Completion of NREL 40-plate model
- (5) Completion of Kathabar prototype
- (6) Performance data from bench-top test
- (7) Start of performance tests on full-plate model
- (8) Heat flux sustained in falling-film model
- (9) Conceptual design of full-scale unit
- (10) Operation of full-plate model
- (11) Start of performance tests

Impact of Advanced LD Technology

- Ventilation preconditioning in humid climates
- Packaged roof-top air conditioner
- Enhanced evaporative cooling

Impact of Advanced LD Technology Humidity Control with High Latent Loads

- Conventional DX system with reheat
- Conventional DX system with Air-Air HX
- Enthalpy wheel preconditioning of ventilation
- Enthalpy wheel, solid-desiccant rotor & HX
- Water-cooled liquid-desiccant conditioner & CT
- Evap-cooled liquid-desiccant conditioner

Impact of Advanced LD Technology Humidity Control with High Latent Loads Assumptions

- School in Houston, TX
- ◆ 10,000 cfm (30% nominal) ventilation air
- ventilation for 13 hours per day, weekdays only
- April through October; summer school session
- Humidity loads must be met
- For DX, 4-row evaporator, 275 fpm face velocity
- 80% efficient gas-fired boiler for reheat

LD Preconditioner Performance

LD Preconditioner Performance

LD Preconditioner Performance

Impact of Advanced LD Technology

		excess	compress	main fan	7-month		
	no. DX	sensible	power	power	demand	gas	cost
	units	kBtu	kWh	kWh	kW	therm	dollars
DX with reheat	8.96	759,023	172,809	60,147	1,495	9,488	31,634
DX with 50% A-A HX	6.02	105,966	132,711	60,168	1,090	1,325	21,087
Enthalpy wheel preconditioner	7.29	373,118	120,160	48,937	1,262	4,664	23,188
EW, SD & HX preconditioner	3.22	0	63,985	21,615	566	16,088	19,673
Evap-Cooled LD; OA cooling	3.08	0	58,830	20,676	542	11,800	16,377
Evap-Cooled LD; exhaust cooling	2.87	0	53,951	19,266	503	12,000	15,803
Water-cooled LD with CT	3.74	0	82,899	25,106	663	8,285	16,891

"A-A HX" -- air-to-air heat exchanger

"EW" -- enthalpy wheel

"SD" -- solid desiccant rotor

"LD" -- liquid-desiccant conditioner

"CT" -- cooling tower

COE \$0.06 per kWh
COG \$0.60 per therm
demand \$8.00 per kW

10,000 cfm Evap-Cooled LD Preconditioner

10,000 cfm Water-Cooled LD Preconditioner

Manufacturing Costs 10,000 cfm Preconditioner 500 Units per Year

* \	Water-cooled conditioner	\$3,250
*	Scavenging air regenerator	\$ 765
*	High-Temp regenerator stage	\$1,925
*	nterchange heat exchanger	\$ 650
*	Cooling tower	\$1,975
*	Fluid heater	\$3,600

Partial total

\$1.22 per cfm

Preconditioner Size

- Conventional 25-ton rooftop
- Solid-Desiccant preconditioner
- Evap-cooled LD preconditioner
- Water-cooled LD preconditioner
- Drykor preconditioner

67 cf/1000 cfm

166 cf/1000 cfm

68 cf/1000 cfm

51 cf/1000 cfm

35 cf/1000 cfm

Summary

- Low-flow liquid-desiccant conditioner ready for field demonstration
- Low-flow scavenging-air regenerator ready for laboratory testing
- Manufacturing costs for conditioner and regenerator consistent with \$5 per cfm preconditioner
- Size of liquid-desiccant systems comparable to conventional systems
- A 0.75 COP preconditioner operating on 200°F heat source could be demonstrated by end of year
- Pilot manufacturing line for conditioner and SA regenerator has been set up

Summary (continued)

- 1.25 COP regenerator at 320°F feasible, but engineering must be completed
- In many applications, the advanced liquiddesiccant system will be the lowest cost alternative for serving high latent loads
- Significant energy savings when regenerator is run on heat recovered from on-site fuel cell or engine-driven generator
- Commercialization path that first deploys a limited number of systems in industrial applications and then expands to institutional and commercial applications

